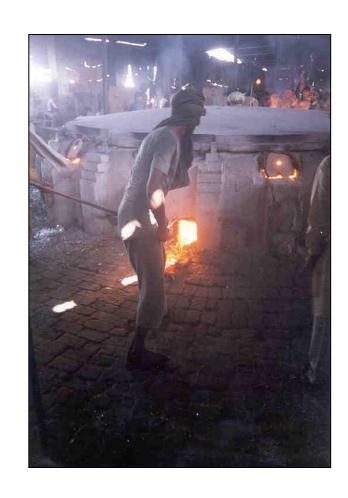


AN OVERVIEW OF TERI-SDC PARTNERSHIP PROGRAM



Salient features of MSMEs

- Many energy-intensive traditional industries like glass & ceramics, foundry, food processing, brick and so on are geographically clustered
- Inefficient resource use
- ☐ Little R&D efforts
 - ☐ Under-developed support institutions and local service providers
 - ☐ Limited capacity to innovate

Why energy efficiency

- Energy efficiency was considered as a way to :
 - Address sustainability issues
 - Make a difference in MSME sector

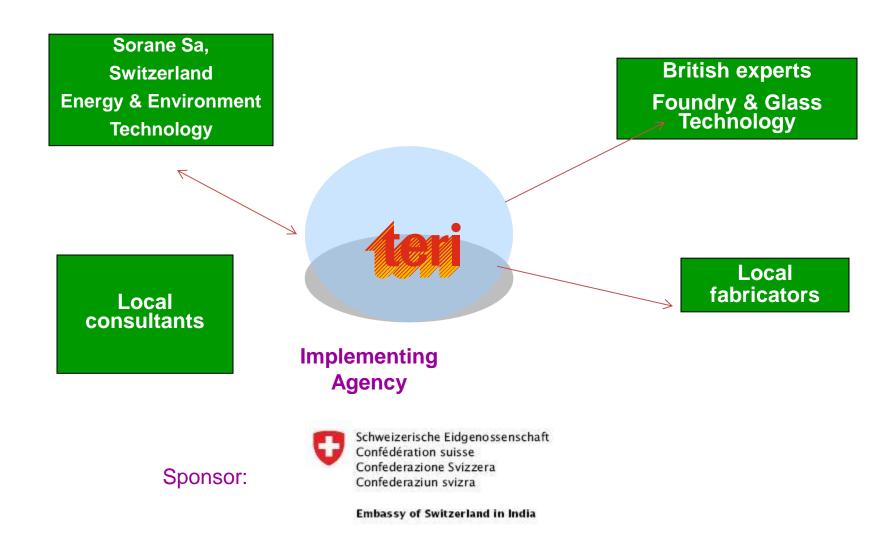
'Understanding 'areas' and 'Levels' in EE

	Area 1	Area 2
	Plant auxiliaries	Process
Level 1	Reduce leaks (air, steam	Furnace
Good housekeeping	etc)	operation
measures		
Level 2	Install variable speed	Install WHR
Retrofits and revamps	drive	
Level 3	Install new equipment	Install new
New plant or process		furnace
designs		

Creating Innovative Solutions for a Sustainable Future

Salient features of TERI-SDC project

- ☐ Identify energy intensive MSME sectors
- Collaborate with experts (both international and local) to develop/modify (R&D) a cleaner technology as per local needs of the sector
- Demonstrate EE technologies as per local needs
- Disseminate demonstrated technology by building/ strengthening local capacities of service providers/users
- ☐ Facilitate implementation of energy conservation measures and best practices (level 1 & 2)



Supporting partners in technology development

Glass sector

Pot furnace segment

Conventional coal fired

Recuperative natural gas fired

Glass sector ...contd.

Muffle furnace segment

Natural gas fired

Foundry sector

Conventional cupola

Divided blast cupola (DBC)

Brick sector

Bull's trench kilns (BTKs)

Clamp kilns

Vertical shaft brick kiln (VSBK)

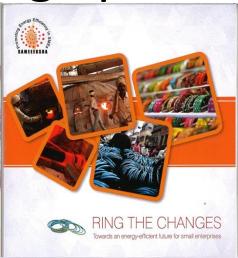
Technology developed under the project

Sector	Technology developed	Energy saving potential	
Glass	 Natural gas fired pot furnace with recuperator Natural gas fired muffle furnace 	25-50%10-15%	
Foundry	 Divided Blast Cupola (DBC) Best operating practices in cupola Venturi scrubber pollution control system 	25-65%Less than 70 ppm of suspended particulate matter	
Brick*	Vertical shaft brick kiln (VSBK)Best operating practices in BTKs	20-40%5-10%	

^{*} Technology transfer from China along with other partners

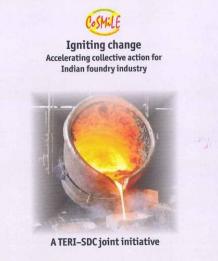
Knowledge products developed

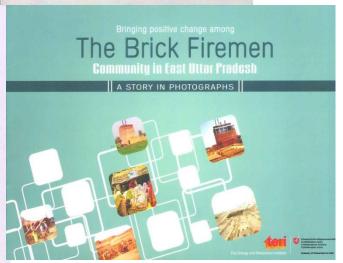
Towards Cleaner Technologies



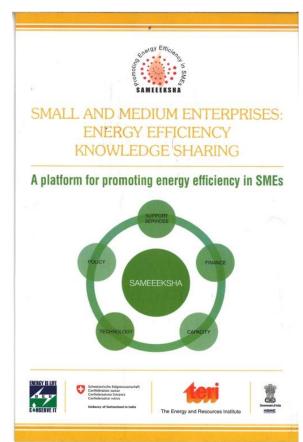
A process story in the Firozabad glass industry cluster





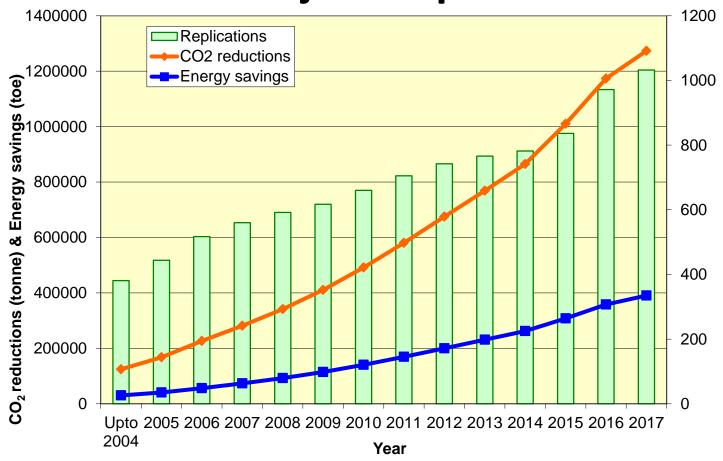


Towards Cleaner Technologies



SAMEEEKSHA platform for knowledge sharing

- SAMEEEKSHA Small And Medium Enterprises: Energy Efficiency and Knowledge Sharing
- Partnership with Bureau of Energy Efficiency (BEE) and Ministry of MSME
- Quarterly newsletters and website for information sharing of case studies, books, videos, presentations etc.



Project impacts

Estimated CO₂ reductions of 1.27 million tonne & energy saving of 390,000 tonne of oil equivalent (toe)

Major activities during previous phase (2014 – 17)

1. Strengthened SAMEEEKSHA platform

- Prepared Energy profiles of about 100 MSME clusters
- Organised platform meetings
- Revamped website launched during MSME summit
- Prepared MSME energy map of India
- Published newsletters providing EE initiatives and potential in MSME is sector

http:/www.sameeeksha.org

Creating Innovative Solutions for a Sustainable Future

Major activities ...contd.

2. Foundry sector EE interventions

- Energy audits and technical assistance in implementation provided to 110 foundries in Rajkot cluster (Gujarat)
- Capacity building and Best Operating Practices (BOP) imparted to 80 foundries in Howrah and Ahmedabad foundry clusters

3. New areas for EE interventions

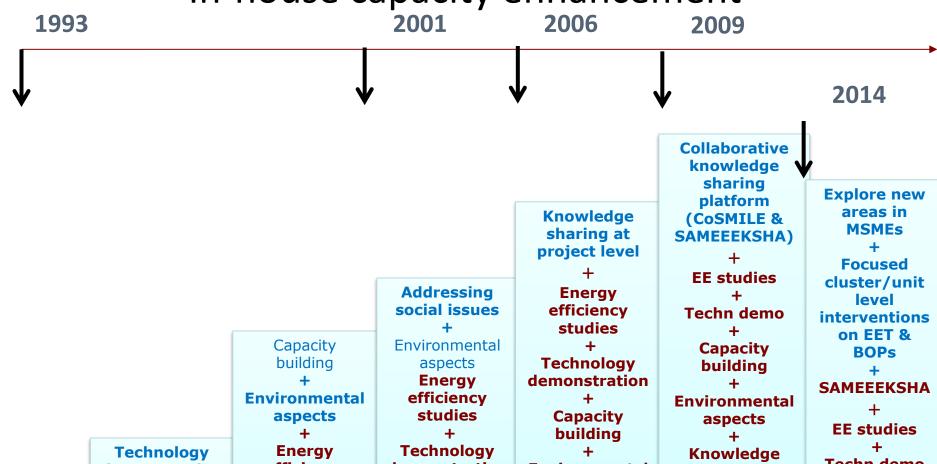
- Agriculture pumpsets
- Secondary aluminium sector

Veneering of furnace

Training manual on Best Operating Practices for Howrah foundry cluster

Prepared for

Swiss Agency for Development and Cooperation (SDC)



Energy Efficiency studies

Energy Efficiency studies

demonstration

efficiency studies **Technology** demonstration

demonstration

Capacity building

Environmental aspects **Addressing** social issues

sharing at

project level

Techn demo **Capacity** building

Environmenta I aspects

Creating Solution Sustainance

Major learnings

- Collaborative RDD&D projects can play a vital role in enhancing technological capacities of developing countries
- Areas of collaboration shall be based on local needs and close involvement of local actors
- Focused cluster level interventions are key to energy efficiency improvements in MSME sector
- Sharing of knowledge and expertise by international experts in such projects are vital for their success
- Anchoring (establishing/ strengthening) technology in intermediaries (LSPs) will ensure sustainable replication of demonstrated technologies
- Government, bilateral and multilateral funding mechanisms can play an important role in promoting RDD&D on cleaner technologies
- Long term and flexible approach help in enhanced adoption of EE technologies

Thank you

