DETAILED PROJECT REPORT ON AIR PRE HEATER HOWRAH CLUSTER

Bureau of Energy Efficiency

Prepared By

Reviewed By

AIR PRE-HEATER FOR GALVANIZING AND ANNEALING FURNACES

HOWRAH GALVANIZING AND WIRE DRAWING CLUSTER

BEE, 2010

Detailed Project Report on Air Pre Heater for galvanizing and annealing furnaces

Galvanizing and Wire Drawing SME Cluster,

Howrah, West Bengal (India)

New Delhi: Bureau of Energy Efficiency;

Detail Project Report No: HWR/WDG/APH/04

For more information

Bureau of Energy Efficiency Ministry of Power, Government of India 4th Floor, Sewa Bhawan, Sector - 1 R. K. Puram, New Delhi -110066 Ph: +91 11 26179699 Fax: 11 26178352 Email: jsood@beenet.in <u>pktiwari@beenet.in</u> WEB: www.bee-india.nic.in

Acknowledgement

We are sincerely thankful to the Bureau of Energy Efficiency, Ministry of Power, for giving us the opportunity to implement the 'BEE SME project in "Howrah Galvanizing and Wire Drawing Cluster, Howrah, West Bengal". We express our sincere gratitude to all concerned officials for their support and guidance during the conduct of this exercise.

Dr. Ajay Mathur, Director General, BEE

Smt. Abha Shukla, Secretary, BEE

Shri Jitendra Sood, Energy Economist, BEE

Shri Pawan Kumar Tiwari, Advisor (SME), BEE

Shri Rajeev Yadav, Project Economist, BEE

Indian Institute of Social Welfare and Business Management(IISWBM) is also thankful to District Industry Center(DIC), Howrah chamber of Commerce & Industry(HCCI), Bengal National Chamber of commerce & Industry(BNCCI), Federation of Small & Medium Industry(FOSMI) and West Bengal Renewable Energy Development Agency (WBREDA) for their valuable inputs, co-operation, support and identification of the units for energy use and technology audit studies and facilitating the implementation of BEE SME program in Howrah Galvanizing and Wire Drawing Cluster.

We take this opportunity to express our appreciation for the excellent support provided by Galvanizing and Wire Drawing Unit Owners, Local Service Providers, and Equipment Suppliers for their active involvement and their valuable inputs in making the program successful and in completion of the Detailed Project Report (DPR).

IISWBM is also thankful to all the SME owners, plant in charges and all workers of the SME units for their support during the energy use and technology audit studies and in implementation of the project objectives.

Indian Institute of Social Welfare and Business Management Kolkata

Contents

List o	f Annexure	vii
List o	f Tables	vii
List o	f Figures	viii
List o	f Abbreviation	viii
Execu	utive summary	ix
Abou	t BEE'S SME program	xi
1	INTRODUCTION	1
1.1	Brief Introduction about cluster	1
1.2	Energy performance in existing system	8
1.2.1	Fuel consumption	8
1.2.2	Average annual production	9
1.2.3	Specific energy consumption	9
1.3	Existing technology/equipment	10
1.3.1	Description of existing technology	10
1.3.2	Role in process	13
1.4	Baseline establishment for existing technology	13
1.4.1	Design and operating parameters	13
1.4.2	Operating efficiency analysis	14
1.5	Barriers in adoption of proposed equipment	14
1.5.1	Technological barrier	14
1.5.2	Financial barrier	14
1.5.3	Skilled manpower	15
2.	PROPOSED EQUIPMENT FOR ENERGY EFFICENCY IMPROVEMENT	16
2.1	Description of proposed equipment	16
2.1.1	Details of proposed equipment	16
2.1.2	Equipment/technology specification	16

2.1.3	Integration with existing equipment	17
2.1.4	Superiority over existing system	17
2.1.5	Source of equipment	17
2.1.6	Availability of technology/equipment	17
2.1.7	Service providers	17
2.1.8	Terms and conditions in sales of equipment	17
2.1.9	Process down time	17
2.2	Life cycle assessment and risks analysis	18
2.3	Suitable unit for Implementation of proposed technology	18
3.	ECONOMIC BENEFITS FROM PROPOSED TECHNOLOGY	19
3.1	Technical benefit	19
3.1.1	Fuel saving	19
3.1.2	Electricity saving	19
3.1.3	Improvement in product quality	19
3.1.4	Increase in production	19
3.1.5	Reduction in raw material	19
3.1.6	Reduction in other losses	19
3.2	Monetary benefits	19
3.3	Social benefits	20
3.3.1	Improvement in working environment	20
3.3.2	Improvement in workers skill	20
3.4	Environmental benefits	20
3.4.1	Reduction in effluent generation	20
3.4.2	Reduction in GHG emission	20
3.4.3	Reduction in other emissions like SO _x	20
4	INSTALLATION OF PROPOSED EQUIPMENT	21
4.1	Cost of project	21

4.1.1	Equipment cost	21
4.1.2	Erection, commissioning and other misc. cost	21
4.2	Arrangements of funds	21
4.2.1	Entrepreneur's contribution	21
4.2.2	Loan amount	21
4.2.3	Terms & conditions of loan	21
4.3	Financial indicators	22
4.3.1	Cash flow analysis	22
4.3.2	Simple payback period	22
4.3.3	Net Present Value (NPV)	22
4.3.4	Internal rate of return (IRR)	22
4.3.5	Return on investment (ROI)	22
4.4	Sensitivity analysis	23
4.5	Procurement and implementation schedule	23

List of Annexure

Annexure -1:	Energy audit data used for baseline establishment	24
Annexure -3:	Detailed technology assessment report	27
Annexure -4	Drawings for proposed electrical & civil works	28
Annexure -5:	Detailed financial analysis	29
Annexure:-6	Procurement and implementation schedule	33
Annexure -7:	Details of technology service providers	34
Annexure -8:	Quotations or Techno-commercial bids for new technology/equipment	35
Annexure -9:	SIDBI financing scheme for energy saving projects in MSME sector	37
Annexure -10:	Calculation of savings	38
List of Table		
Table 1.1a Det	ails of annual energy consumption in the wire drawing units	1
Table 1.1b Det	ails of annual energy consumption in the galvanizing units	1
Table 1.2 Avera	age fuel and electricity consumption in typical wire drawing units	8
Table 1.3 Avera	age fuel and electricity consumption in typical galvanizing units	8
Table 1.4 Typic	cal average annual production in wire drawing units	9
Table 1.5 Typic	cal average annual production in galvanizing units	9
Table 1.6: Spe	cific Energy Consumption in Galvanizing and Wire-drawing Units	10
Table 1.7: Hea	t loss calculation	11
Table 1.8 Clust	er specifications of present furnaces	11
Table 1.9 Elect	ricity charges for WBSEDCL	12
Table 1.10 Elec	ctricity charges for CESC	12
Table 1.11 Pres	sent furnace specifications	13
Table 1.12 Fue	I consumption at a typical galvanizing unit	14
Table 2.1 Tech	nical specification of a air pre heater	16
Table 3.1 Ener	gy and monetary benefit	19
Table 4.1 Deta	ils of proposed technology project cost	21

Table 4.2 Financial indicators of	proposed technology/equipment	
Table 4.3 Sensitivity analysis at o	different scenarios	23

List of Figures

Figure 1.1: Product Wise Classification of Galvanizing Units	.2
Figure 1.2: Product Wise Classification of Wire-drawing Units	.3
Figure 1.3: Production Wise Classification of Galvanizing Units	.4
Figure 1.4: Production Wise Classification of Wire-drawing Units	.4
Figure 1.5 Process flow diagrams for a typical wire drawing unit	.6
Figure 1.6: Process Flow diagram for a typical galvanizing unit	.7

List of Abbreviation

APH	Air Pre Heater
BEE	Bureau of Energy Efficiency
CDM	Clean Development Mechanism
DPR	Detailed Project Report
DSCR	Debt Service Coverage Ratio
GHG	Green House Gases
GWh	Giga Watt Hours
IRR	Internal Rate of Return
MT	Million Ton
NPV	Net Present Value
ROI	Return on Investment
SHC Coal	Semi Hard Coke Coal
MoMSME	Ministry of Micro Small and Medium Enterprises
SIDBI	Small Industrial Development Bank of India

EXECUTIVE SUMMARY

Indian Institute of School Welfare and Business management (IISWBM) is executing BEE-SME program in the Galvanizing and Wire Drawing Cluster of Howrah, supported by Bureau of Energy Efficiency (BEE) with an overall objective of improving the energy efficiency in cluster units.

Howrah Galvanizing and Wire Drawing Cluster was one of the major clusters of Galvanizing and Wire-drawing in Howrah district of West Bengal. There are about 100 SMEs in Galvanizing and Wire-drawing sector of Howrah Cluster comprising about 50% galvanizing units and 50% wire drawing units. The units are constantly under threat of closure due to poor energy efficiency along with pollution issues and variability in demand. Improvement in energy efficiency would largely ensure sustainable growth of the sector, which needs a mechanism to identify technology and techniques for improving energy efficiency in these highly unorganized and so far uncared for industrial units.

Every galvanizing unit of the cluster has furnaces to melt zinc. Even some of the wire-drawing units have furnaces to perform annealing. Conventionally, the flue gas from these furnaces is simply allowed to escape, taking away a lot of unused heat. A part of the wasted heat maybe recovered by installing apparatus like Air Pre-Heater where the secondary air to be used for combustion is pre-heated, thereby consuming less fuel.

Installation of one of the waste heat recovery systems i.e. installation of Air pre heater in the existing furnace would lead to fuel saving upto 5647 litre furnace oil per year.

This DPR highlights the details of the study conducted for assessing the potential for installation of Air pre heater, possible Energy saving and its monetary benefit, availability of the technologies/design, local service providers, technical features & proposed equipment specifications, various barriers in implementation, environmental aspects, estimated GHG reductions, capital cost, financial analysis, sensitivity analysis in different scenarios and schedule of Project Implementation.

This bankable DPR also found eligible for subsidy scheme of MoMSME for "Technology and Quality Upgradation Support to Micro, Small and Medium Enterprises" under "National Manufacturing and Competitiveness Programme". The key indicators of the DPR including the Project cost, debt equity ratio, monetary benefit and other necessary parameters are given in table:

S.No	Particular	Unit	Value
1	Project cost	₹ (Lakh)	2.49
2	Furnace Oil saving	Litre/year	5647
3	Monetary benefit	₹ (Lakh)	1.69
4	Debit equity ratio	Ratio	3:1
5	Simple payback period	Year	1.47
6	NPV	₹ (Lakh)	3.80
7	IRR	%age	49.85
8	ROI	%age	27.43
9	DSCR	Ratio	2.71
10	CO ₂ emission reduction	MT/year	18
11	Process down time	Days	4

<u>The projected profitability and cash flow statements indicate that the project</u> <u>implementation i.e. installation of air pre heater will be financially viable and</u> <u>technically feasible solution for galvanizing and wire drawing cluster.</u>

ABOUT BEE'S SME PROGRAM

The Bureau of Energy Efficiency (BEE) is implementing a BEE-SME Programme to improve the energy performance in 25 selected SMEs clusters. Howrah Galvanizing and Wire Drawing Cluster is one of them. The SME Programme of BEE intends to enhance the awareness about energy efficiency in each cluster by funding/subsidizing need based studies and giving energy conservation recommendations. For addressing the specific problems of these SMEs and enhancing energy efficiency in the clusters, BEE will be focusing on energy efficiency, energy conservation and technology up-gradation through studies and pilot projects in these SMEs clusters.

Major activities in the BEE -SME program are furnished below:

Activity 1: Energy use and technology audit

The energy use technology studies would provide information on technology status, best operating practices, gaps in skills and knowledge on energy conservation opportunities, energy saving potential and new energy efficient technologies, etc for each of the sub sector in SMEs.

Activity 2: Capacity building of stake holders in cluster on energy efficiency

In most of the cases SME entrepreneurs are dependent on the locally available technologies, service providers for various reasons. To address this issue BEE has also undertaken capacity building of local service providers and entrepreneurs/ Managers of SMEs on energy efficiency improvement in their units as well as clusters. The local service providers will be trained in order to be able to provide the local services in setting up of energy efficiency projects in the clusters.

Activity 3: Implementation of energy efficiency measures

To implement the technology up-gradation project in the clusters, BEE has proposed to prepare the technology based detailed project reports (DPRs) for a minimum of five technologies in three capacities for each technology.

Activity 4: Facilitation of innovative financing mechanisms for implementation of energy efficiency projects

The objective of this activity is to facilitate the uptake of energy efficiency measures through innovative financing mechanisms without creating market distortion.

1 INTRODUCTION

1.1 Brief Introduction about cluster

The Galvanizing and Wire-drawing cluster in Howrah district of West Bengal is a very large cluster. There are about 100 SMEs in the Howrah Cluster and comprising of about 50% galvanizing units and 50% wire drawing units. The units are constantly under threat of closure due to poor energy efficiency along with pollution issues and variability in demand. Improvement in energy efficiency would largely ensure sustainable growth of the sector. It needs a mechanism to identify technology and techniques for improving energy efficiency in this highly unorganized and so far uncared for industrial units.

The major raw materials for the Galvanizing industry are zinc, ammonium chloride, hydrochloric acid, and di-chromate powder. On the other hand, the raw materials used in Wire-drawing units are Mild Steel (MS) / Copper / Aluminium Wires of gauges varying from 14 to 4 gauge i.e. 1.6 to 5.1 mm dia., while Uni-Lab powder (made by Predington Company based in Bombay) or Grommet–44 is used for lubrication (eg.).

The main form of energy used by the cluster units are grid electricity, Furnace Oil, Coal, LPG and Diesel oil. Major consumptions of energy are in the form of Furnace Oil and Diesel. Details of total energy consumption at Howrah cluster are furnished in Table 1.1a and 1.1b:

S. No	Type of Fuel	Unit	Value	% contribution
1	Electricity	GWh/year	2.24	76
2	Wood	Ton/year	300	5
3	LPG	Ton/year	70.5	19

 Table 1.1a Details of annual energy consumption in the wire drawing units

S. No	Type of Fuel	Unit	Value	% contribution
1	Electricity	MWh/year	867.3	13
2	Diesel	kilolitre/year	19.2	2
3	Furnace Oil	kl/year	731.7	62.5
4	Coal	Ton/year	1161	18.5
5	Wood	Ton/year	600	4

Classification of Units

The Galvanizing and Wire Drawing units can be broadly classified on the basis of the following criteria:

- 1) Product wise
- 2) Production capacity wise

Products Manufactured

The galvanizing units can be classified on the basis of products into five basis groups. These are:

- a) Units producing transmission tower structures
- b) Units producing fastener items
- c) Units producing angles and channels
- d) Units working on scrap iron
- e) Units producing wires

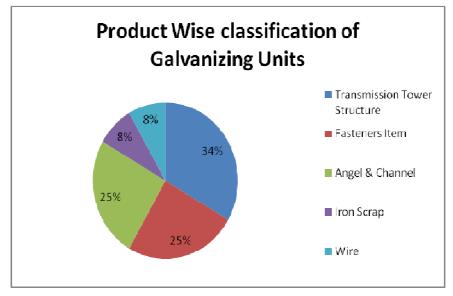


Figure 1.1: Product Wise Classification of Galvanizing Units

Similarly, the wire drawing units are mainly classified into the following categories on the basis of products manufactured as units, which produce:

a) MS wire

- b) Copper Wire
- c) High carbon wire
- d) Aluminium wire

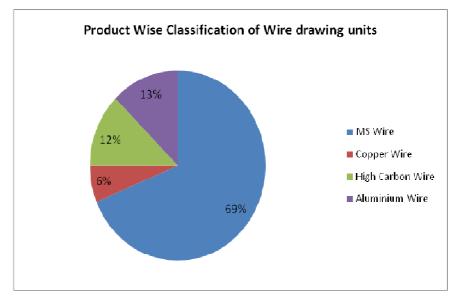


Figure 1.2: Product Wise Classification of Wire-drawing Units

Capacity wise production

In both Wiredrawing and Galvanizing units in Howrah, the production capacity has been found to vary more than 10 folds. In the units, where detailed audit has been performed, there are Wire-drawing units producing as low as 241 Ton/year to as high as 3500 Ton/year. Similarly, the production from Galvanizing units, where audit was performed, has been found to be within the range of 890 to 7500 Ton per annum. Both the Galvanizing and the Wire Drawing units have been classified on the basis of production into three categories, namely 1-500 TPA (calling micro scale), 500-1000 TPA (small scale) and above 1000 TPA (medium scale) capacities.

The distribution of units of Galvanizing and Wire Drawing industries has been depicted in Figures 1.3 and 1.4:

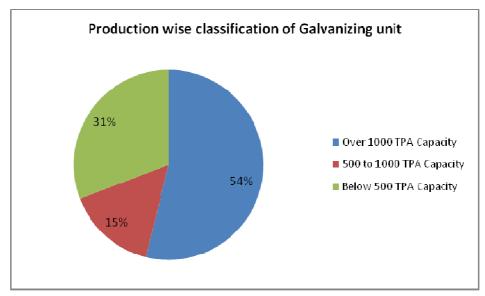


Figure 1.3: Production Wise Classification of Galvanizing Units

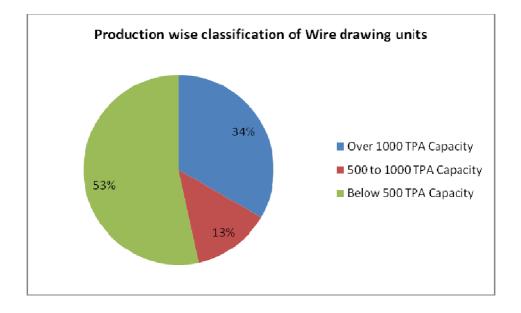


Figure 1.4: Production Wise Classification of Wire-drawing Units

Energy usages pattern

Average yearly electricity consumption in Wire Drawing unit ranges from 820 to 700 MWh depending on the size of the unit. In thermal energy, solid fuel such as wood and gaseous fuel like LPG are used in annealing furnaces in some of the units. The LPG consumption in a typical unit is about 135000 kg/year. The wood consumption in a typical unit is about 300 Ton/year.

Average yearly electricity consumption in a galvanizing unit ranges from 60 thousands to 3 lakh kWh depending on the size of the unit and type of operations performed. In thermal energy, furnace oil is primarily used in the galvanizing furnaces since it is reasonably cheap. The use of FO ranges from 50 to 450 kiloliters/year. The use of diesel oil ranges from 1.3 to 19.2 kilolitre/year and is used in either drying the job or pre-heating flux solution. SHC coal is also used for the purpose of drying the job and ranges from 150 to 800 MT/year. Wood is used in some larger units which have facilities for running processes other than galvanizing. It can typically use 600 MT /year of wood.

General production process for the wire drawing units

The wire about to be drawn is first put into an annealing furnace. The annealed wire is then put into drums for coiling. Thereafter, the wire is put through dies of various sizes interspersed by sets of coiler drums.

These drums are driven by electric motors that are of induction type. The chemical used for lubricating the wire through the die is mainly wire-drawing powder (as it is commonly termed in the wire-drawing industry). The finished products of MS Wires are stacked on a steeper from where finished goods are dispatched to the end customers, after dipping in to a rust-preventive oil solution, which protects the final product from corrosion for up to one-and-half month. The finished wire products are mainly supplied to downstream industries such as galvanizers, electrical manufactures and the local market.

General production process flow diagram for drawing wires is shown in Figure 1.5.

Air Pre Heater for Galvanizing and Annealing Furnaces

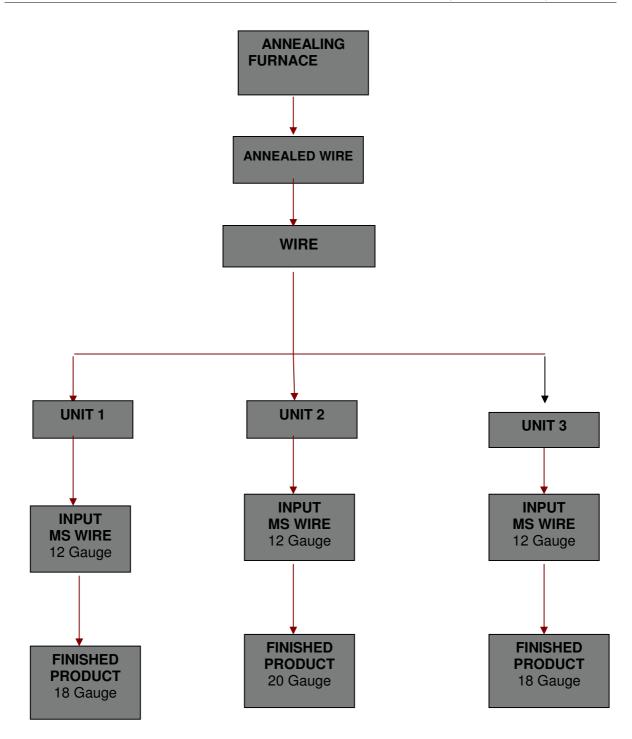


Figure 1.5 Process flow diagrams for a typical wire drawing unit

General production process for the galvanizing units

In a typical galvanizing unit, the production process involves seven stages as is shown in the schematic diagram in Figure 1.6. First the job or the raw material, which is to be galvanized is dipped in dilute acid solution and termed acid pickling. Then after the acid pickling process, the job is rinsed in plain water to remove any acid layer present on the job surface. Thereafter, the job is moved onto a SHC coal based drying bed for preheating and drying purpose. This helps produce a uniform layer of zinc on the job surface when the job is dipped in the zinc bath. Then after the drying process is over, the job is dipped into the zinc bath for galvanizing where a layer of molten zinc is deposited uniformly over the job surface.

When the job is taken out of the zinc bath, ammonium chloride powder (the fluxing agent) is sprayed over the job to remove the impurities and other dust particles remaining over the surface. Then the job is dipped in plain cold water for cooling. This process is termed as water quenching. After completion of the water-quenching process, the job is dipped into dichromate solution to give a glazing effect to the job galvanized. The description of the above galvanizing process is depicted in the Figure 1.6 process flow diagram.

Fig 1.6: Process Flow diagram for a typical galvanizing unit

1.2 Energy performance in existing system

1.2.1 Fuel consumption

Average fuel and electricity consumption in typical wire drawing units is given in Table 1.2 and that of galvanizing units is given in Table 1.3. A small unit is defined to be a unit with production between 500 and 1000 TPA and medium to be greater than 1000 TPA. The micro units are defined to have capacity less than 500 TPA.

Only the larger wire drawing industries have furnaces and also perform annealing. Among the wire drawing units audited, only one, which was also larger used wood for annealing. Further, most of the wire drawing unit produces MS wires.

Scale of Unit	Micro	Small	Medium		
Energy	Electricity (kWh/ yr)	Electricity (kWh/ yr)	Electricity (kWh/ yr)	LPG (Ton/yr)	Wood (Ton/yr)
MS wire	101486	209216	266889	NA	300
Copper wire	NA	NA	295310	70.5	NA
High carbon wire	NA	NA	1088751	NA	NA
Aluminium wire	NA	NA	266889	NA	NA

Table 1.2 Average fuel and electricity consumption in typical wire drawing units

Scale of Unit	Small			Medium				
Energy	Electricity	Furnace Oil	Diesel Oil	Electricity	Furnace Oil	Diesel Oil	SHC coal	Wood
	(kWh/ yr)	(l/yr)	(l/yr)	(kWh/ yr)	(l/yr)	(l/yr)	(kg/yr)	(kg/yr)
Transmission Tower Structure	NA	NA	NA	59346	85195	NA	NA	NA
Fasteners Item	107670	132000	19200	109883	112500	NA	21000	NA
Angle & Channel	NA	NA	NA	35491	165000	NA	150000	NA
Wire	NA	NA	NA	302013	165000	7040	NA	600000

1.2.2 Average annual production

Annual production in terms of TPA is taken in case of wire drawing units. The micro units are defined to have production less than 500 TPA, small to be between 500 and 1000 TPA and medium to have production higher than 1000 TPA.

 Table 1.4 Typical average annual production in wire drawing units

S.		Production (in TPA)		
No.	Type of Industry	Micro scale	Small scale	Medium scale
1	MS wire	100	600	2000
2	Copper wire	NA	NA	1000
3	High carbon wire	NA	NA	1000
4	Aluminium wire	100	NA	700

Table 1.5 Typical average annual production in galvanizing units

S. No. Type of Industry		Production (in TPA)		
3. NO.	Type of muusiry	Micro scale	Small scale	Medium scale
1	Transmission Tower Structure	NA	NA	1969
2	Fasteners Item	200	890	4320
3	Angel & Channel	150	NA	3750
4	Wire	NA	NA	3650

1.2.3 Specific energy consumption

Specific energy consumption both electrical and thermal energy per Ton of production for galvanizing and wire drawing units are furnished in Table 1.6 below:

Parameter		Unit	Specific Energy Consumption		
			Min	Max	Average
Galvanizing	Electrical	kWh/Ton	5.12	120	46.15
Garvanizing	Thermal	kCal/Ton	200370	579600	385978
Wire Drawing	Electrical	kWh/Ton	30	868	308
	Thermal	kCal/Ton	135	511	323

Table 1.6: Specific Energy Consumption in Galvanizing and Wire-drawing Units

Specific energy consumptions are found to vary widely for wire-drawing and galvanizing processes in the Howrah cluster as shown in the above table. This is because of the variation in size of units, size & type of job, fuels types and volume of process, as, for example, some of the Galvanizing units, manufacturing the microwave tower and high-tension electricity transmission towers, have extensive fabrication activity as a part of the process.

1.3 Existing technology/equipment

1.3.1 Description of existing technology

In a galvanizing unit, the percentage of the furnace oil cost among the entire fuel bill is 73% and costs approximately ₹ 37 lakh per year in a typical unit. Fuel efficiency of the furnaces could have been improved by recovering part of the waste heat in the flue gas to pre-heat the combustion air at least up to 120 deg C without any modification in the burner. On the contrary significant amount of heat is wasted through flue gas at a temperature 470 deg C (fig. 1.7) much higher than the temperature required for pre-heating the combustion air in a air pre-heater which is absent in existing technology in the cluster. A brief description of existing process is shown in Fig. 1.6 of section 1.1. The waste can be equivalent to 22371 litre of oil (or 54027 kg of coal) per year.

The primary use of the furnaces in galvanizing units is to melt zinc into which the job to be galvanized is dipped. IS: 2629 – 1985 suggests temperature of the zinc vat as 440 - 460 deg C. The heat loss calculations are shown below:

Particular	Unit	Value
Flue gas temperature	deg C	470
Mass flow of flue gas (from measurement)	kg/kg of fuel	21.72
Specific heat of flue gas	kcal/kg/deg C	0.24
Allowable exhaust temperature of flue gas	deg C	100
Temperature drop	deg C	370
Heat loss	kcal/kg of fuel	1929
Total oil consumption	l/yr	120480
Total oil consumption	kg/yr	112046
Heat loss per year	kcal/yr	216107925
Gross Calorific Value of oil	kcal/kg	10500
Equivalent oil loss	kg/yr	20582
	litre/yr	22371
Gross Calorific Value of coal	kcal/kg	4000
Equivalent coal loss	kg/yr	54027

Table 1.7: Heat loss calculation

Existing furnace specifications are shown in Table 1.8 below.

Table 1.8 Cluster specifications of present furnaces

S. No.	Parameter	Detail
1	Manufacturer	Local
2	Dimensions	1.06 m x 0.66 m x 0.76 m to 6.8 m x 0.86 m x 0.86 m
3	Average F.O. consumption	31 to 41 litre/hr
4	Temperature of molten zinc	440 to 460 deg C

S. No.	Parameter	Detail
5	Capacity of vat	5 to 13 Ton
6	Typical wall temperature	90 to 150 deg C
7	Ambient temperature max	40 deg C

In some areas of Howrah, such as, Jangalpur, electricity is supplied by the West Bengal State Electricity Distribution Company Limited (WBSEDCL) at the following tariff rates:

Energy charges

The cost of furnace oil in a typical unit is Rs. 30/litre.

Table 1.9 Electricity charges for WBSEDCL

S. No.	Unit consumed, kWh	Energy Charges, ₹/kWh
1	Upto 500 unit	4.63
2	Next 1500 unit	5.81
3	Above 2000 unit	6.07

Contract demand charges is Rs.15/kVA. Thus the energy charge for a typical unit with contract demand of 49 kVA and average monthly energy consumption of 9157 kWh is Rs. 6.03 / kWh.

In some areas of Howrah, such as, Liluah, electricity is supplied by CESC at the following tariff rates:

Table 1.10 Electricity charges for CESC

S. No.	Unit consumed, kWh	Energy Charges, ₹/kWh
1	For first 500 unit	4.43
2	For next 1500 unit	4.87
3	For next 1500 unit	5.20
4	For above 3500 unit	5.49

Contract demand charge is Rs. 5/kVA. Thus the energy charge for a typical unit with contract demand of 71.8 kVA and average monthly energy consumption of 8972 kWh is ₹ 5.40 / kWh.

1.3.2 Role in process

Furnaces heat up the vats in which zinc is melted. The job to be galvanized is dipped in the molten zinc during the hot dip process. IS: 2629 – 1985 suggests temperature of the zinc vat as 440 - 460 deg C.

1.4 Baseline establishment for existing technology

1.4.1 Design and operating parameters

The typical furnaces used at present in the galvanizing and wire drawing units provide temperatures of 500 deg C. The typical dimensions are 104 inch X 96 inch X 39 inch.

Table 1.11 Present furnace specifications

S. No.	Parameter	Detail
1	Manufacturer	Local
2	Dimensions	104 inch X 96 inch X 39 inch
3	Average F.O. consumption	41 l/hr
4	Temperature of molten zinc	500 deg C
5	Temperature of the furnace	1000 deg C
6	Capacity of vat	5 Ton
7	Typical wall temperature	90 deg C
8	Ambient temperature max	40 deg C

Furnace Oil consumption in the galvanizing furnaces depend on the following parameters

- a) Condition of the walls and insulation
- b) Size of the job to be galvanized
- c) Amount of excess air provided for combustion.
- d) Amount of zinc to be heated

Fuel requirement in the galvanizing plant depends on the production. Detail of fuel consumption in a typical unit is given in Table 1.11 below:

S. No.	Energy Type	Unit	Value
1	Electricity	kWh/yr	107670
2	Furnace Oil	litre/yr	120480
3	Diesel Oil	litre/yr	19200

Table 1.12 Fuel consumption at a typical galvanizing unit

1.4.2 Operating efficiency analysis

Operating efficiency for a normal furnace is found to be in the range of 15 to 25%. The table in annexure-1 shows calculations of efficiency by the direct and the indirect methods.

1.5 Barriers in adoption of proposed equipment

1.5.1 Technological barrier

In Howrah cluster, the technical understanding of the wire drawing process has been excellent with several committed technical personnel having detailed know-how of the processes involved. Some of them are visiting countries like China and European ones to find the best possible technological solutions to the challenges in their units. Indeed there is committed effort on the part of the management in such units to grasp alterations which may give them benefits however with the caveat that the advantages be proven without any doubt.

People are generally reluctant to invest in an experimental scheme particularly if the sufficient savings are not guaranteed. Hence, finding the first person, who is willing to implement a change, is still a challenge. While carrying out the audits and presenting the Energy audit reports to the units, in the discussion with the plant owners & other personnel, many of them agreed with many of the identified energy saving measures and technologies but they demanded demonstration of the energy saving technologies in any plant and thereafter they have readiness to follow.

1.5.2 Financial barrier

Discussions of financial issues with the units concluded that they are not scared of investments. The larger units are confident of financing their own alterations while the smaller units are certain to find good schemes from the banks to fund their respective efficiency measures. However, the good part of the discussions was that more and more units are taking energy conservation measures seriously and willing to go the distance. A mention must be made of SIDBI whose schemes have attracted attention and can play a catalytic role in the implementation of the measures.

1.5.3 Skilled manpower

Technical personnel employed in the units are generally skilled works but not engineers. Thus the production process remains traditional. This is one of the main hindrances in adopting newer technology. Specialized training among the workforce and local experts can circumvent the problem significantly. Effective dissemination can enhance replication potential in the various units. The gains obtained by one plant can inspire other units to follow suit.

2. PROPOSED EQUIPMENT FOR ENERGY EFFICENCY IMPROVEMENT

2.1 Description of proposed equipment

2.1.1 Details of proposed equipment

All the galvanizing units and some wire drawing units have furnaces in them. These furnaces let flue gases out at temperatures of 400-500 °C, which simply escape to the environment. The present efficiency of these furnaces is typically in the range of 15-25%. If the secondary combustion air to the furnace is pre-heated using the Air Pre-Heater (APH), the furnace requires less fuel. It is known as a thumbs rule that for every 23 °C raise of the combustion air temperature, the efficiency of the furnace goes up by 1%.

2.1.2 Equipment/technology specification

The furnaces used typically dump flue gases at temperatures of 490-600 °C. The APH recovers a part of the heat.

S. No	Parameter	Detail
1	Manufacturer	YANTRA SHILPA UDYOG (P) LTD.
2	Dimensions of APH	1 m x 1 m x 1.5 m
3	Chimney diameter	300 mm
4	Average F.O. consumption	41 liter/hr
5	Air mass flow rate	1204 kg/hr
6	Temperature of fresh air at the APH inlet	30 deg C
7	Temperature of combustion air at the APH outlet	120 deg C
8	Typical temperature of flue gas coming out of APH	380 deg C
9	Typical temperature of flue gas going into APH	490 deg C
10	Expected improvement in efficiency	4.8 %

Table 2.1 Technical specification of a air pre heater

2.1.3 Integration with existing equipment

The flue gas coming out of the furnace could be put into the inner channel of an Air Pre-Heater where the combustion air would circulate on the outer side. This apparatus could be installed separately and would not effect the operation of the furnace in any way.

The following are the reasons for selection of this technology

- It will reduce the total amount of fuel required.
- It reduces the GHG emissions
- This project is also applicable for getting the carbon credit benefits.

2.1.4 Superiority over existing system

Use of this technology reduces the amount of fuel required in the furnace due to pre heat of combustion air with the help of waste heat.

2.1.5 Source of equipment

There are many vendors for such technology. It has successfully been adopted and implemented throughout the country and benefits reaped been established beyond doubt. There are no concerns of scarcity of such devices and the prices are reasonable as well.

2.1.6 Availability of technology/equipment

Suppliers of this technology are available at local level as well as at international level very easily. Many of the suppliers took initiative in reaching out to the industry representatives and informing them about the utility of such devices.

2.1.7 Service providers

Details of technology service providers are shown in Annexure-7.

2.1.8 Terms and conditions in sales of equipment

50% of the charges would have to be paid upfront and the rest along with the taxes would have to be paid while sending the Performa invoice prior to dispatch. Further the warranty period extends upto 12 months from the point of delivery for any inherent manufacturing defect or faulty workmanship.

2.1.9 Process down time

The down time might be four days for making changes to the flue gas line and install the APH. Detail of process down time is given in Annexure 6.

2.2 Life cycle assessment and risks analysis

Life of the equipment is about three years. Risk involves in the implementation of proposed project is to avoid any leaks on the inner channel to avoid mixing of the flue gas with the fresh air going in. Such leaks can affect the combustion process severely.

2.3 Suitable unit for Implementation of proposed technology

Suitable unit for implementation of this technology is a galvanizing unit having the production capacity of about 2399 Ton/yr and having total furnace oil consumption of about 120480 litre/yr.

3. ECONOMIC BENEFITS FROM PROPOSED TECHNOLOGY

3.1 Technical benefit

3.1.1 Fuel saving

Installation of Air pre heater would save more than 5647 liters of furnace oil over a year.

3.1.2 Electricity saving

This project does not affect the electricity consumption *directly or indirectly*.

3.1.3 Improvement in product quality

The quality of the product would still remain the same. It shall have no impact on the galvanizing process but merely make it more efficient.

3.1.4 Increase in production

The production will remain the same as in present.

3.1.5 Reduction in raw material

Raw material consumption is same even after the implementation of proposed technology.

3.1.6 Reduction in other losses

None

3.2 Monetary benefits

The monetary benefits of the unit are mainly due to reduction in the furnace oil consumption by 5647 litre/yr. This amounts to monetary savings of ₹ 169419/yr. A detailed estimate of the saving has been provided in the Table 3.1 below:

Table 3.1 Energy and monetary benefit

S.No	Parameter	Unit	Value
1	Present furnace oil consumption in a unit	litre/year	118080
2	Cost of furnace oil	₹ /litre	30
3	Savings in furnace oil by using APH	l/year	5647
4	Monetary savings due to FO saving	₹ /year	169419
5	Total monetary benefit	₹ /year	169419

Further details of total monetary benefit are given in Annexure - 3.

3.3 Social benefits

3.3.1 Improvement in working environment

Reduction in furnace oil consumption would probably not change the working environment apart from making the management happier.

3.3.2 Improvement in workers skill

The workers would probably not find too much of a difference in the day to day operation of the device. Hence their skills are probably going to be unaffected.

3.4 Environmental benefits

3.4.1 Reduction in effluent generation

There would be less effluent generation since there would less fuel burned in the furnace.

3.4.2 Reduction in GHG emission

The measure helps in reducing CO_2 emission is 18 MT/yr, as 3.18 ton of CO_2 would be reduced for a reduction of 1 ton of FO consumption.

3.4.3 Reduction in other emissions like SO_x

Significant amount of SO_X will be reduced amounting to 33 kg/yr due to reduction in energy consumption, as 0.006318 kg of SO_X would be reduced for a reduction of 1 kg of FO consumption.

4 INSTALLATION OF PROPOSED EQUIPMENT

4.1 Cost of project

4.1.1 Equipment cost

The cost of Air Pre Heater (APH) is ₹ 180000/- as per the quotation provided by the vendor provided at Annexure 8.

4.1.2 Erection, commissioning and other misc. cost

The installation & other costs could amount to a further ₹ 69340/-. Details of project cost are furnished in Table 4.1 below:

Table 4.1 Details of proposed technology project cost

S.No	Particular	Unit	Value
1	Cost of APH	₹ (In Lakh)	1.80
2	Cost of Installation	₹ (In Lakh)	0.40
3	Taxes & other misc. cost	₹ (In Lakh)	0.29
4	Total cost	₹ (In Lakh)	2.49

4.2 Arrangements of funds

4.2.1 Entrepreneur's contribution

The entrepreneur shall have to pay 25% of the total amount upfront i.e. ₹ 0.62 lakh. The rest could be arranged as loans.

4.2.2 Loan amount

Loan amount would be 75% i.e. ₹ 1.87 lakh. There are loans available for buying such equipments from SIDBI and from the MSME of the Government of India which have 25% subsidy in some schemes.

4.2.3 Terms & conditions of loan

The interest rate is considered at 10%, which is SIDBI's rate of interest for energy efficient projects (refer to annexure 9). The loan tenure is 5 years excluding initial moratorium period is 6 months from the date of first disbursement of loan.

4.3 Financial indicators

4.3.1 Cash flow analysis

Profitability and cash flow statements have been worked out for a period of 8 years. The financials have been worked out on the basis of certain reasonable assumptions, which are outlined below.

The project is expected to achieve monetary savings of ₹ 1.69 lakh/yr.

- The Operation and Maintenance cost is estimated at 4% of cost of total project with 5% increase in every year as escalations.
- Interest on term loan is estimated at 10%.
- Depreciation is provided as per the rates provided in the companies act.

Considering the above mentioned assumptions, the net cash accruals starting with ₹ 1.32 lakh in the first year operation and gradually increases to ₹ 6.55 lakh at the end of eighth year.

4.3.2 Simple payback period

The total cost of implementing the proposed technology is ₹ 2.49 lakh and monetary savings is ₹ 1.69 lakh. Hence the simple payback period works out to be 1.47 years.

4.3.3 Net Present Value (NPV)

The Net present value of the investment works out to be ₹ 3.80 lakh.

4.3.4 Internal rate of return (IRR)

The Internal rate of return of the project would be 49.85%.

4.3.5 Return on investment (ROI)

The average return on investment of the project activity works out at 27.43%.

Details of financial indicator are shown in Table 4.2 below:

Table 4.2 Financial indicators of proposed technology/equipment

S.No	Particulars	Unit	Value
1	Simple Pay Back period	Month	18
2	IRR	%age	49.85
3	NPV	₹ In lakh	3.80
4	ROI	%age	27.43
5	DSCR	Ratio	2.71

4.4 Sensitivity analysis

A sensitivity analysis has been carried out to ascertain how the project financials would behave in different situations like when there is an increase in fuel savings or decrease in fuel savings. For the purpose of sensitive analysis, two following scenarios has been considered

- Optimistic scenario (Increase in fuel savings by 5%)
- Pessimistic scenario (Decrease in fuel savings by 5%)

In each scenario, other inputs are assumed as a constant. The financial indicators in each of the above situation are indicated along with standard indicators.

Details of sensitivity analysis at different scenarios are shown in Table 4.3 below:

Table 4.3 Sensitivity analysis at different scenarios

Particulars	IRR(%age)	NPV (₹ in lakh)	ROI(%age)	DSCR
Normal	49.85	3.80	27.43	2.71
5% increase in fuel savings	53.01	4.13	27.58	2.84
5% decrease in fuel savings	46.68	3.48	27.26	2.57

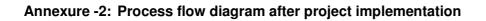
4.5 Procurement and implementation schedule

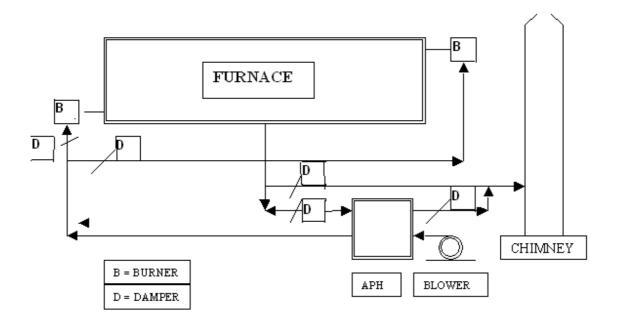
Total procurement and implementation schedule required for proposed project are about 9 weeks and details are given in Annexure 6.

ANNEXURE

Annexure -1: Energy audit data used for baseline establishment

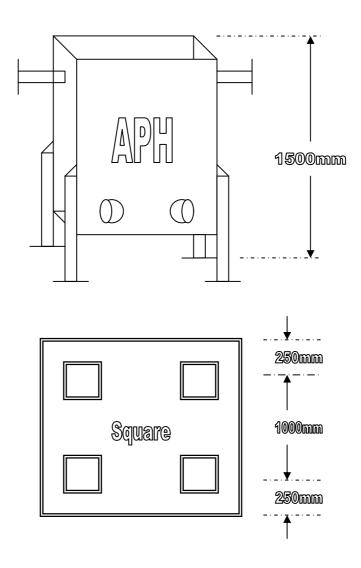
Calculation of efficiency of the furnace by the direct method


Parameter	Unit	Value
Production	kg/hr	833
Annual Production	Ton/yr	2399
GCV of Furnace Oil	kCal/kg	10500
Amount of FO required annually	litre/yr	120480
Sp. Gravity of FO	-	0.92
Amount of FO required annually	kg/yr	110842
Energy burnt from FO annually	kCal/yr	1163836800
Energy burnt from FO annually (Input)	kJ/yr	4888114560
Zinc VAT temperature	deg C	520
Heat taken by zinc	kJ/MT	49620144
Heat taken by iron	kJ/MT	502440943
Heat taken by Metals	kJ/MT	205392
Heat utilize (Output)	kJ/yr	552266479
Efficiency	%	11.29



Parameter	Unit	Value
Flue gas temperature	deg C	490
Ambient temperature	deg C	40
Specific gravity of FO	-	0.92
Average FO consumption	litre/hr	41
Average FO consumption	kg/hr	37.72
GCV of FO	kCal/kg	10500
Average oxygen percentage in flue gas	% age	4.5
Excess Air	% age	27.27
Theoretical air required to burn 1 kg of oil	kg	15
Total air supplied	kg/kg of oil	19.09
Mass of fuel (1kg)	kg	1
Actual mass of air supplied/kg of fuel	kg/kg of oil	20.09
Specific heat of flue gas	kCal/kg/deg C	0.24
Temperature difference	deg C	450
Heat loss	kCal/kg of oil	2169.82
Heat loss in flue gas	% age	20.66
Moisture in 1kg of FO	kg/kg of FO	0.15
GCV of FO	kCal/kg	10500
Evaporation loss due to moisture content in FO	% age	1.12
Amount of hydrogen in 1 kg of FO	kg/kg of FO	0.1123
GCV of FO	kCal/kg	10500
Loss due to Evaporation of water formed due to Hydrogen	in FO <mark>% age</mark>	7.57
Loss through furnace walls	% age	9.2
Unaccounted for heat loss	% age	48
Total Heat loss	% age	86.56
Furnace Efficiency	% age	13.44

Calculation of efficiency of furnace by the indirect method



Particulars	Units	Value
Annual FO consumption cost	₹/yr	3542400
Temperature of the flue gas at APH inlet	deg C	490
Temperature of the flue gas at APH outlet	deg C	380
Drop in temperature	deg C	110
Efficiency increases (Assuming that every 23 deg C drop in temperature helps improve efficiency by 1%)	%age	4.78
Savings	₹/yr	169419
Probable investment	₹	180000
Installation cost	₹	40000
Taxes & other misc. cost	₹	69340
Total investment	₹	249340
Estimated life of system	Yrs	3
Simple payback	months	18

Annexure -3: Detailed technology assessment report

Annexure -4 Drawings for proposed electrical & civil works

Annexure -5: Detailed financial analysis

Assumption

Name of the Technology		Ai	r Pre-heater
Details	Unit	Value	Basis
No of working days	Days	300	Feasibility Study
No of Shifts per day	Shifts	1	Feasibility Study
Proposed Investment			
Investment for Air Pre-heater	₹ in lakhs	1.80	Feasibility Study
Cost of installation	₹ in lakhs	0.40	
VAT 4 % will be charged	₹ in lakhs	0.072	
Packaging & forwarding	₹ in lakhs	0.036	
Excise duty (@ 10.3%) will be charged	₹in lakhs	0.185	Feasibility Study
Total investment	₹ in lakhs	2.49	Feasibility Study
Financing pattern			
Own Funds (Equity)	₹ in lakhs	0.62	Feasibility Study
Loan Funds (Term Loan)	₹ in lakhs	1.87	Feasibility Study
Loan Tenure	yr	5	Assumed
Moratorium Period	Months	6	Assumed
Repayment Period	Months	66	Assumed
Interest Rate	%/yr	10	SIDBI Lending rate
Estimation of Costs			
O & M Costs	% on Plant & Equip	4	Feasibility Study
Annual Escalation	%	5	Feasibility Study
Estimation of Revenue			
Fuel saving (FO)	Litre	5647	
Cost of fuel	₹/litre	30	
St. line Depn.	% age	5.28%	Indian Companies Act
IT Depreciation	% age	80.00%	Income Tax Rules
Income Tax	% age	33.99%	Income Tax

Estimation of Interest on Term Loan

Years	Opening Balance	Repayment	Closing Balance	Interest
1	1.87	0.06	1.81	0.22
2	1.81	0.12	1.69	0.18
3	1.69	0.24	1.45	0.16
4	1.45	0.48	0.97	0.12
5	0.97	0.53	0.44	0.08
6	0.44	0.44	0.00	0.53
		1.87		

WDV Depreciation

Particulars / years	1	2
Plant and Machinery		
Cost	2.49	0.50
Depreciation	1.99	0.40
WDV	0.50	0.10

Projected Profitability							₹ (in l	₹ (in lakh)	
Particulars / Years	1	2	3	4	5	6	7	8	
Fuel savings	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	
Total Revenue (A)	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	
Expenses									
O & M Expenses	0.10	0.10	0.11	0.12	0.12	0.13	0.13	0.14	
Total Expenses (B)	0.10	0.10	0.11	0.12	0.12	0.13	0.13	0.14	
PBDIT (A)-(B)	1.59	1.59	1.58	1.58	1.57	1.57	1.56	1.55	
Interest	0.22	0.18	0.16	0.12	0.08	-	-	-	
PBDT	1.38	1.41	1.43	1.46	1.50	1.57	1.56	1.55	
Depreciation	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	
PBT	1.25	1.28	1.29	1.32	1.37	1.44	1.43	1.42	
Income tax	-	0.34	0.48	0.49	0.51	0.53	0.53	0.53	
Profit after tax (PAT)	1.25	0.94	0.81	0.83	0.86	0.90	0.90	0.89	

Computation of Tax

₹(in lakh)

Particulars / Years	1	2	3	4	5	6	7	8
Profit before tax	1.25	1.28	1.29	1.32	1.37	1.44	1.43	1.42
Add: Book depreciation	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Less: WDV depreciation	1.99	0.40	-	-	-	-	-	-
Taxable profit	(0.62)	1.01	1.43	1.46	1.50	1.57	1.56	1.55
Income Tax	-	0.34	0.48	0.49	0.51	0.53	0.53	0.53

Projected Balance Sheet

Particulars / Years	1	2	3	4	5	6	7	8
Liabilities								
Share Capital (D)	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62
Reserves & Surplus (E)	1.25	2.18	2.99	3.82	4.68	5.58	6.48	7.37
Term Loans (F)	1.81	1.69	1.45	0.97	0.44	0.00	0.00	0.00
Total Liabilities (D)+(E)+(F)	3.68	4.50	5.07	5.41	5.74	6.20	7.10	8.00
Assets	1	2	3	4	5	6	7	8
Gross Fixed Assets	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49
Less Accm. depreciation	0.13	0.26	0.39	0.53	0.66	0.79	0.92	1.05
Net Fixed Assets	2.36	2.23	2.10	1.97	1.84	1.70	1.57	1.44
Cash & Bank Balance	1.32	2.27	2.97	3.45	3.91	4.50	5.53	6.56
TOTAL ASSETS	3.68	4.50	5.07	5.41	5.74	6.20	7.10	8.00
Net Worth	1.87	2.81	3.62	4.44	5.30	6.20	7.10	8.00
Debt Equity Ratio	2.90	2.71	2.33	1.56	0.71	0.00	0.00	0.00

Projected Cash Flow							₹	(in lakh))
Particulars / Years	0	1	2	3	4	5	6	7	8
Sources									
Share Capital	0.62	-	-	-	-	-	-	-	-
Term Loan	1.87								
Profit After tax		1.25	0.94	0.81	0.83	0.86	0.90	0.90	0.89
Depreciation		0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Total Sources	2.49	1.38	1.07	0.94	0.96	0.99	1.03	1.03	1.03

Application									
Capital Expenditure	2.49								
Repayment Of Loan	-	0.06	0.12	0.24	0.48	0.53	0.44	-	-
Total Application	2.49	0.06	0.12	0.24	0.48	0.53	0.44	-	-
Net Surplus	-	1.32	0.95	0.70	0.48	0.46	0.59	1.03	1.03
Add: Opening Balance	-	-	1.32	2.27	2.97	3.45	3.91	4.50	5.53
Closing Balance	-	1.32	2.27	2.97	3.45	3.91	4.50	5.53	6.56

IRR

IRR								₹ (in la	kh)
Particulars / months	0	1	2	3	4	5	6	7	8
Profit after Tax		1.25	0.94	0.81	0.83	0.86	0.90	0.90	0.89
Depreciation		0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Interest on Term Loan		0.22	0.18	0.16	0.12	0.08	-	-	-
Cash outflow	(2.49)	-	-	-	-	-	-	-	-
Net Cash flow	(2.49)	1.59	1.24	1.10	1.08	1.06	1.03	1.03	1.03
IRR	49.85%								
NPV	3.80								

Break Even Point

Particulars / Years	1	2	3	4	5	6	7	8
Variable Expenses								
Oper. & Maintenance Exp (75%)	0.07	0.08	0.08	0.09	0.09	0.10	0.10	0.11
Sub Total(G)	0.07	0.08	0.08	0.09	0.09	0.10	0.10	0.11
Fixed Expenses								
Oper. & Maintenance Exp (25%)	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.04
Interest on Term Loan	0.22	0.18	0.16	0.12	0.08	0.00	0.00	0.00
Depreciation (H)	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Sub Total (I)	0.37	0.33	0.32	0.28	0.24	0.16	0.17	0.17
Sales (J)	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69
Contribution (K)	1.62	1.62	1.61	1.61	1.60	1.60	1.59	1.59
Break Even Point (L= G/I)	23.10%	20.64%	19.68%	17.65%	14.80%	10.23%	10.36%	10.49%
Cash Break Even {(I)-(H)}	14.97%	12.49%	11.51%	9.46%	6.59%	1.99%	2.10%	2.21%
Break Even Sales (J)*(L)	0.39	0.35	0.33	0.30	0.25	0.17	0.18	0.18

Return on Investment								₹ (in lakh)		
Particulars / Years	1	2	3	4	5	6	7	8	Total	
Net Profit Before Taxes	1.25	1.28	1.29	1.32	1.37	1.42	1.43	1.42	10.78	
Net Worth	1.87	2.81	3.62	4.44	5.30	6.20	7.09	7.99	39.31	
									27.43%	

Debt Service Coverage Ratio								₹ (in lak	h)
Particulars / Years	1	2	3	4	5	6	7	8	Total
Cash Inflow									
Profit after Tax	1.25	0.94	0.81	0.83	0.86	0.90	0.90	0.89	5.58
Depreciation	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.79
Interest on Term Loan	0.22	0.18	0.16	0.12	0.08	0.01	0.00	0.00	0.76
Total (M)	1.59	1.24	1.10	1.08	1.06	1.03	1.03	1.03	7.12

Interest on Term Loan	0.22	0.18	0.16	0.12	0.08	0.01	0.00	0.00	0.76
Repayment of Term Loan	0.06	0.12	0.24	0.48	0.53	0.44	0.00	0.00	1.87
Total (N)	0.28	0.30	0.40	0.60	0.61	0.45	0.00	0.00	2.63
	5.74	4.21	2.76	1.80	1.76	2.29	0.00	0.00	2.71
Average DSCR (M/N)	2.71								

S. No.	Activities		Weeks									
<i>3. NO.</i>	Activities	1	2	3	4	5	6	7	8	9		
1	Ordering the APH											
2	Replacing the flue gas pathway											
3	Installing the APH											

Annexure:-6 Procurement and implementation schedule

Break up of shutdown period of plant required for Operation of APH

S.No	Activity	Day
1	Prepare the pathway for the flue gas to go	2
2	Install the Air Pre-Heater and connect the secondary air to the outside of APH.	2

Day wise break up of shut down period for installation of APH

S.No	Activity		Day								
0.110			1		2		3	4	!	5	
1	Marking the pathway for the flue gas										
2	Dismantling of existing pipeline										
3	New ducting & piping arrangement for flue gas										
4	Installation of APH										
5	Connect secondary air to APH										
6	Instrumentations and trial										

S.No.	Name of Service Provider	Address	Contact Person and No.		
1	Yantra Shilpa Udyog (P) Ltd	12-B, Amritlal Bose Street,	Mr. Swapan Kr. Dutta		
		Kolkata-700 005	Phone : 91-33-2555 0316 / 2555 0539		
			Fax : 91-33-2555 1995		
			Email : htsu@cal3.vsnl.net.in		
			Web:www.hytsu.co.in		
2	Wesman Group of Companies	8, Mayfair Road, Kolkata -	Mr. Arnab Ganguly		
		700019	Phone : 9433344999		
			Landline- 91-33- 40020300/40020372		
			Fax 91-33- 22816402/22908050		
			Email : arnab.ganguly@wesman.com		
			ו (Tech. Director)		
			1- 9831844880		
			33- 575876/24455766		
			4472832		
-	t iotmail.com				

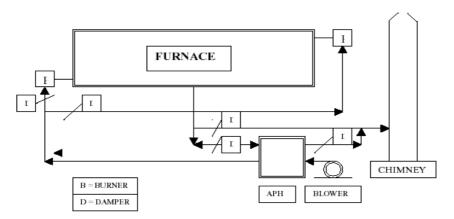
Annexure -8: Quotations or Techno-commercial bids for new technology/equipment

VSU

WEB: <u>www.hytsu.co.in</u>

YANTRA SHILPA UDYOG (P) LTD. 12-B, AMRITALAL BOSE STREET, KOLKATA – 700 005. PHONE: 91 – 33 – 2555 0316 / 2555 0539 FAX : 91 – 33 – 2555 1995. EMAIL : <u>htsu@cal3.vsnl.net.in</u>

Our Ref YSU/30/ENQ/10-11


December 28, 2010

то

Energy Management Department of MPSM Indian Institute of Social Welfare & Business Management (IISWBM) Management House; College Square West; Kolkata - 700 073, INDIA Ph. 033 2241 3756/5792/8694/8695; Mob. 94331 53009; Fax 033 22413975 (pp) Email: <u>binoykchoudhury@gmail.com</u>; <u>iiswbm@iiswbm.edu</u>

SUB: OFFER FOR AIR PREHEATER

TYPICAL LAYOUT FOR A GALVANIZING UNIT

<u>SKETCH – 1</u>

AIR PREHEATER FOR IMPROVEMENT OF COMBUSTION AIR TEMPERATURE THROUGH EXHAUST FLUE GAS

YSU

WEB: www.hytsu.co.in

PRICE: Air Pre heater for combustion air of burner as above Rs. 1, 80, 000.00 (One lakh Eighty Thousand only) per Set

TERMS AND CONDITIONS:

PRICES:	Ex-Works, Kolkata.
PACKING & FORWARDING CHARGES:	2% Extra, at actual.
INSTALLATION	Rs. 40, 000.00 Lumpsum
VAT:	4% Extra, as applicable.
EXCISE DUTY:	Extra as applicable at the time of delivery.
PAYMENT:	30% of the value is to be paid as an advance along with order – balance before delivery against Proforma Invoice of each consignment.
DELIVERY:	2 months from the date of receipt of your firm Order clear in all respect both technically and commercially.
GUARANTEE:	We stand guarantee for any manufacturing defects of the aforesaid equipment for twelve Months from the date of delivery EXCEPT Wearable Parts and bought out components.
VALIDITY:	Our offer will remain valid for 30 days from the offered date.

Hope you will find our offer very much attractive both technically and commercially. We now look forward to receive your valued order at the earliest.

Thanking you,

Yours faithfully, FOR YANTRA SHILPA UDYOG (P) LTD. S. K. DUTTA DIRECTOR.

S. No.	Parameter	Norms
1	Minimum Assistance	Rs.10 lakh
2	Minimum promoters contribution	25% for existing units 33% for new units
3	Debt Equity Ratio	Maximum 2.5 :1
4	Interest Rate	The project expenditure eligible for coverage under the Line will carry rate of interest of 11% p.a. payable monthly
5	Upfront fee	Non refundable upfront fee of 1% of sanctioned loan plus applicable service tax.
6	Security	First charge over assets acquired under the scheme; first/second charge over existing assets and collateral security as may be deemed necessary.
7	Asset coverage	Minimum Asset Coverage should be 1.4:1 for new units and 1.3:1 for existing units.
8	Repayment period	Need based. Normally, the repayment period does not extend beyond 7 years. However, longer repayment period of more than 7 years can be considered under the Line if considered necessary.

Annexure -9: SIDBI financing	scheme for energy s	saving projects in MSME see	ctor

Source: http://www.sidbi.in/energysaving.asp

Annexure -10: Calculation of savings

Method 1

Savings Calculation for APH				
S. No	Parameter	Unit	Value	
1	Air mass flow rate (m)	kg/hr	1204	
2	Temp. of flue gas at APH inlet (t ₁₎	°C	490	
3	Temp. of flue gas at APH outlet (t ₂)	٥C	380	
4	Drop in temp. (∆t)	٥C	110	
5	Specific heat of combustion air (C_p)	kCal/(kg ∘C)	0.23	
6	Every 23 °C drop in temp. results in 1% fuel conservation			
7	Rise in Efficiency	%	∆t/23 °C=4.8	
8	FO consumption/ hr	liter/hr	41	
9	Cost of 1 liter of FO	Rs./litre	30	
10	Operating hours / day	hr	12	
11	Annual operating day	Day	240	
12	Annual operating hours	hr	2880	
13	Annual FO consumption	liter/yr	118080	
14	Annual cost of FO	Rs./yr	3542400	
15	Annual FO savings	liter/yr	5647	
16	Annual savings	Rs./yr	169419	

Savings Calculation for APH				
S. No		Unit	Value	
1	Air mass flow rate (m)	kg/hr	1204	
2	Temp. of Flue gas at APH inlet $(t_{1)}$	°C	30	
3	Temp. of flue gas from APH outlet (t ₂)	٥C	120	
4	Temp. difference (Δt)	°C	90	
5	Specific heat of combustion air (C _p)	kCal/(kg ∘C)	0.24	
6	Heat savings	kCal/hr	mxC _p x∆t	
			26006.4	
7	GCV of Furnace Oil (FO)	kCal/kg	10500	
8	FO savings	kg/hr	2.48	
9	Cost of FO	Rs./litre	30	
10	Specific gravity of FO	ρ	0.92	
11	Operating hours / day	hr	12	
12	Annual operating day	Day	240	
13	Annual operating hours	hr	2880	
14	Annual FO savings	kg/yr	7133	
15	Annual cost savings	Rs./yr	232604	

Method 2

Bureau of Energy Efficiency (BEE)

(Ministry of Power, Government of India) 4th Floor, Sewa Bhawan, R. K. Puram, New Delhi – 110066 Ph.: +91 – 11 – 26179699 (5 Lines), Fax: +91 – 11 – 26178352 Websites: www.bee-india.nic.in, www.energymanagertraining.com

Indian Institute of Social Welfare and Business Management MANAGEMENT HOUSE College Square West, Kolkata – 700 073 Website: www.iiswbm.edu

India SME Technology Services Ltd DFC Building, Plot No.37-38, D-Block, Pankha Road, Institutional Area, Janakpuri, New Delhi-110058 Tel: +91-11-28525534, Fax: +91-11-28525535 Website: www.techsmall.com